
Abstract

As analysts are expected to process a greater amount of information in a shorter amount of time, creators of
big data software are challenged with the need for improved efficiency. Ray, our group’s usable, scalable
genome assembler, addresses big data problems by using optimal resources and producing one, correct and
conservative, timely solution. Only by abstracting the size of the data from both the computers and the
humans can the real scientific question, often complex in itself, eventually be solved. To draw a curtain over
the specific computational machinery of big data, we developed RayPlatform, a programming framework that
allows users to concentrate on their domain-specific problems. RayPlatform is a parallel message-passing
software framework that runs on clouds, supercomputers, and desktops alike. Using established technologies
such as C + + and MPI (message-passing interface), we handle the genomes of hundreds of species, from
viruses to plants, using machines ranging from desktop computers to supercomputers. From this experience,
we present insights on making computer time more useful—and user time much more valuable.

Introduction

It is no secret that life sciences have made their entry

into the world of big data.1–7 Modern sequencing technolo-

gies produce terabytes of data in the span of a few days.8,9

Many large-scale projects have been set up to take advantage

of these technologies in fields as varied as ecology,10,11 in-

fectious diseases,12–15 and phylogeny.16–22 Analysts have la-

mented about the unyielding nature of their tools.23,24

Sequencing the human genome might once have taken 10

years, cost millions, and yielded countless appearances in

mainstream media, but today it takes 1 week, costs approx-

imately $10,000, and is barely worth a mention in the

Methods section. Yet the classes of algorithms used to piece it

together are largely unchanged.25–31

An approach used to deal with the large scale of the data

produced is to similarly increase the scale of the resources

devoted to it, for example, by using supercomputers.32

Several genome assemblers exist that can use an MPI

(message-passing interface33) library to scale over thousands

of computing nodes.34–39 Kiki is also a genome assembler that

uses MPI (https://github.com/GeneAssembly/kiki). Ray,

which we developed, parallelizes every step of its execution.
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Notably, ABySS (genome assembler that uses MPI for

building the genome graph) was used to assemble the very

large genome of the white spruce.40

The genome assembly problem is commonly represented as a

graph problem.26,28,31,41,42 With the input sequence reads, a

graph is constructed, and then paths are discovered in this

graph. There are different types of graphs for genome as-

sembly, and it was shown that the two popular ones (de

Bruijn graph and unitig/overlap graph) are closely con-

nected.31 Genome assembly is diffi-

cult because repeats in genomes are

usually longer than the readouts

obtained by DNA sequencing.

The methods used in Ray to paral-

lelize the assembly problem over as

many processing elements as are

available are readily applicable to

most types of graph problems.

For example, the approach of di-

viding the exploration of a graph

between several actors by giving

them different starting points was

first reported in 2009 by Jackson and colleagues36 using an

IBM Blue Gene/L.

Here we cover not only increasing scalability through paral-

lelization but also various constraints facing big data analysis

software such as ours, and we present the ways we have

counteracted them. These constraints cover the costs in time

and resources of running the software, of course, but also the

incidental costs to the user of setting up the analysis envi-

ronment, accessing the results, and choosing the parameters.

For example, one of the foremost issues to be taken into

consideration when publishing scalable analysis software for

large datasets is that of portability. Not everyone interested in

scaling out their analysis can or will use supercomputers;

indeed, there is a growing interest in running all kinds of

biological analyses on the cloud.43–45 Ray’s design has allowed

it to be easily ported over to a cloud environment. As an

example, Ray is available in the DNAnexus platform (https://

platform.dnanexus.com/app/ray), which allows apps to be

started with a few mouse clicks. Even among supercomputers,

special care has to be taken so that the software is flexible

enough to maintain its performance on different types of

machines such as the Cray XE6, the IBM Blue Gene/Q, and

university computing infrastructures. It has to be friendly

enough so that the time saved for the user by the increased

performance is not offset by the time cost of getting the

software to run in the first place.

We also introduce Ray Cloud Browser, a web-based genome

visualization tool that allows users to more closely examine

and validate their results.

Definitions

Here, graphs are utilized for representing the genomic data

and for optional communication tasks such as message

routing. A directed graph G = (V, A) is a set of vertices V and

a set of directed relationships (called arcs) A4V · V. A de

Bruijn graph is a directed graph defined for an alphabet

S¼fr1, r2, . . . , rjSjg and an integer k 2 N. Its vertices are

the sequences of k elements from the alphabet. There is an arc

(u,v) 2 between two vertices u and v if and only if the last k - 1

elements of u and the k - 1 elements

of v are the same. In genome re-

search, the alphabet is S= {A, T,

C, G} (nucleotides), and the integer

k usually falls roughly within the

range from 1946 and 150—the cur-

rent maximum length for the se-

quencing platform that provides the

highest yield. In the problems that

Ray aims to solve, the graph is a

distributed subgraph (meaning that

its vertices are not stored all in one

location). The complete de Bruijn

graph is not required because only

the DNA sequences that occur in a given sample are rele-

vant—any genome contains a small proportion of all possible

sequences of length k if k is large enough. A path P of a graph

is an ordered list of vertices Æv1, v2, v3, . . . , vjPjæ such that any

two consecutive vertices vi, vi + 1 are linked by an arc. Here, we

define a traversal as the process by which a path is con-

structed. More precisely, in the context of de novo genome

assembly, the traversal is guided by heuristics based on spatial

information provided by input data.35 Reads (usually at least

100 nucleotides) are larger than vertices (for example k = 31).

Furthermore, heuristics also use long-range information

provided by paired reads and mate pairs.

A parallel job comprises an ordered set of processes, which

are called ranks. A message is a unit of information passed

from one rank to another. The granularity refers to the trade-

off between the amount of communication and the amount

of processing in any given period. A coarse granularity means

that processing is not heavily interleaved with communica-

tion and that communication occurs once in a while. A fine

granularity is characterized by a high level of overlap between

communication and processing.

Building a Message-Passing Framework

A significant part of the challenges involved in writing scal-

able, parallel scientific software are common to algorithms

and applications. Because factors such as the size of messages,

frequency of communications, and number of potential re-

cipients are largely dependent on the scale of the problem

rather than its specific application domain, they are ideal

candidates for abstraction.

‘‘A SIGNIFICANT PART OF THE
CHALLENGES INVOLVED
IN WRITING SCALABLE,
PARALLEL SCIENTIFIC

SOFTWARE ARE COMMON
TO ALGORITHMS AND

APPLICATIONS.’’

BEST PRACTICES FOR DESIGNING SCALABLE TOOLS
Godzaridis et al.
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RayPlatform, the framework Ray is built on (see Fig. 1),

abstracts and optimizes three different aspects of the per-

formance of an application built on message passing, that is,

nontrivially parallel: communications between the applica-

tion’s ranks (see Talk is Not Cheap section), task switching

and scheduling (see A Question of Efficiency), and data access

and retrieval (see The True Weight of Big Data). The source

code of RayPlatform is licensed under the GNU Lesser

General Public License (version 3) and is available at https://

github.com/sebhtml/RayPlatform. A minimalist example

using RayPlatform is available at https://github.com/sebhtml/

RayPlatform-example.

Ray 2.2.0 contains 26 plugins that are registered on the

RayPlatform using its application programming interface

(API). In that regard, the source code of Ray focuses on

solving biological problems such as de novo genome (or

metagenome) assembly, taxonomic profiling, and other

tasks39 instead of solving framework-related problems, which

are handed over to RayPlatform. The source code of Ray is

licensed under the GNU General Public License (version 3)

and is available at https://github.com/sebhtml/ray.

Talk Is Not Cheap

As demonstrated before,47 communication overhead is a

looming specter—casting its shadow over the hopes of su-

percomputing scalability and performance. When tackling a

problem with many nodes (motherboards), though now

equipped with more memory and processing threads, it is not

uncommon to witness a slowdown in computation. Mis-

placed data, stalled execution flow, or high-latency networks

can all affect the entire computing system. One strategy to

reduce the number of messages that transit in an interconnect

is to use message aggregation.

The best supercomputers available implement highly opti-

mized hardware message routing: Cray XT/XE48 and IBM

Blue Gene/Q49 use multidimensional tori while cutting-edge

Cray XC50 and IBM PERCS51 systems use a transparently

managed dynamic hierarchy of all-to-all networks. In these

cases, there is dedicated proprietary

hardware that ensures messages ar-

rive in a timely and consistent man-

ner, along with packaging expertise

to understand the proper placement

of computer components. However,

not every computing facility is

equipped with such sophisticated

communication networks and some

interconnects have poor perfor-

mance in the presence of an any-to-

any communication pattern. With

an any-to-any communication pattern, any rank can send a

message directly to any other rank. To counteract this effect,

there are several levels of control over communication inten-

sity and efficiency in RayPlatform. First, different kinds of

software routing graphs can be used to alleviate the load on

some parts of the network (see Ref.52 for an introduction to

this subject) in order to bring down the numbers of direct

physical connections each rank is required to maintain. This

facility can also balance the messages that transit through a

rank. In RayPlatform, software message routing is a service

provided by a virtual message router. In addition to all-to-all

and per-node routing schemes, RayPlatform supports Kautz

graphs (offering the smallest diameter), de Bruijn graphs,

polytope routing,52–54 and torus graphs (modeling the physical

interconnect of many supercomputers).49,50 On Université

Laval’s supercomputer, Colosse (960 compute nodes, 7680

processor cores), this yields a five-times-lower latency (500 to

90 microseconds) for a 512-rank job. Ray components use a

tighly coupled communication pattern. Therefore, reducing

the point-to-point communication latency reduces the com-

putation time.

Messages are aggregated to get economies of scale, and ranks

cannot receive more than one message per cycle. This allows

ranks to use the work quantum they use each cycle to advance

their own problem, rather than just

answer requests for data from other

ranks. This communication strategy

works well when the work is bal-

anced across ranks. In Ray, work is

derived from ownerships of vertices

in the de Bruijn graph. Ownership is

determined by hashing a vertex, and

therefore the vertices in the graph

are uniformly distributed on ranks,

and so is the communication. The

data are stored in an in-memory

distributed hash table (DHT) with double hashing55 and

incremental resizing.

FIG. 1. The relationship between Ray and RayPlatform.

‘‘MISPLACED DATA, STALLED
EXECUTION FLOW, OR HIGH-

LATENCY NETWORKS CAN
AFFECT THE ENTIRE

COMPUTING SYSTEM.’’

Godzaridis et al.
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RayPlatform also includes a prototype for mini-ranks to

adequately leverage systems with a higher number of cores

per machine but a slower interconnect between individual

nodes. Mini-ranks are ranks, which is to say they send mes-

sages to each other and do their own computing. One of the

differences is that mini-ranks can be pooled together inside a

process to reduce the number of MPI processes doing calls to

MPI functions. There is no routing between mini-ranks of the

same rank, and the communication is guaranteed to be in-

memory, which lessens the load on the network. This hybrid

programming model allows us to extend RayPlatform’s par-

adigm to handle varying combinations of network and

computing performance and to keep using the MPI paradigm

to write the software. In RayPlatform, mini-ranks are im-

plemented as POSIX threads.

A Question of Efficiency

Because the kind of computing power required for big data

applications is the kind of computing power that, very often,

is only available for rental (by-the-hour usage on shared in-

frastructure), as is the case in clouds

and academic clusters, one source of

waste is paying for nodes that don’t

do their fair share of work. As a re-

sult, load balancing is often a prime

concern, and it’s also difficult to

manage. Even when no data depen-

dency exists between the many exe-

cution threads, efficiency requires

splitting the data so that the varying

amounts of work required by each

datum add up to the same amount

for each rank; this would be a vari-

ation on the NP-hard knapsack

problem.56 In molecular dynamics,

this very problem was addressed in CHARM + + using task

migration, where workers move between computing nodes in

order to maintain a balanced load across every compute

nodes.57,58

While traversing a path in the graph does not necessarily

depend on intermediate results obtained by the computation

of any other path, the problem still requires constant com-

munication to deal with the massive amount of data. If there

were, for example, dedicated data stores that provided all of

the necessary sequences to every rank – eliminating its de-

pendency on other compute units – there would need to be

more cores that would spend the vast majority of their time

waiting for messages, which is inefficient.

RayPlatform has a relatively conservative approach when it

comes to scheduling. All ranks run the same code, and with

the exception of very few moments in the algorithm (when all

the work is done, for example), do the same work on different

parts of the data. Each rank has an allocated opportunity,

once per cycle, to receive a message, and then process it.

When more than one message is available, only the first is

read. The remaining messages will wait for the next iteration.

Each rank has a quantum of work that is really advancing one

of several ongoing tasks, each assigned to one worker of a

pre-allocated pool. For example, a quantum of work can

consist of extracting a subsequence from a DNA read. The

rank then sends messages, and if a task that is part of the

rank’s work is waiting on another rank’s reply, it is suspended

and other tasks are chosen instead. The granularity is really

small to allow each rank to timely probe incoming messages

as computation and communication take place in the same

thread on each rank.

A state machine manages the steps of the program. These

steps and events are grouped into three types: master modes,

slave modes, and message tags. Associated handlers are reg-

istered with the RayPlatform API by the application at run-

ning time. All steps can be done in parallel, and when all the

work for a step is done, and/or additional conditions are met,

all ranks advance to the next state. The advantage of this

method is that it is very generic: no

prior knowledge regarding data de-

pendencies within a given step of the

algorithm is required, or at least

these dependencies are delegated

from the framework to the applica-

tion. For example, from a data

point-of-view, one first needs to

load the sequence reads in memory

before building a distributed de

Bruijn subgraph. This data depen-

dency is managed by the state ma-

chine, and a given rank knows when

it’s ready. When everyone is ready,

the next state is affected. The

scheduling scheme in Ray is broadly applicable, provided that

tasks can be encoded with granularity.

The True Weight of Big Data

A problem with big data, especially when paired with large

computing needs, is that bigger data is harder to move. A

single machine can hardly hold all of the data, not even all of

the data it needs, at the same time, and depending on data

structures and network interconnects, acquiring that data is

costly.

There are several ways around this problem. Faster, shared

data stores can be used in the form of large amounts of

shared memory or specific, high-performance networked

file systems. They are often expensive, and because they

require specific maintenance they are not generally offered

as part of cloud services, nor are they available by merely

‘‘RAYPLATFORM ALSO
INCLUDES A PROTOTYPE FOR
MINI-RANKS TO ADEQUATELY
LEVERAGE SYSTEMS WITH A
HIGHER NUMBER OF CORES

PER MACHINE BUT A SLOWER
INTERCONNECT BETWEEN

INDIVIDUAL NODES.’’

BEST PRACTICES FOR DESIGNING SCALABLE TOOLS
Godzaridis et al.

230BD BIG DATA DECEMBER 2013



connecting together bits of commodity hardware. For data

transport, DNA sequencing instruments can send data in

increments to the cloud where they can be processed (ex-

amples: Galaxy,59 DNAnexus,60–62 Illumina BaseSpace,63

GenomeSpace64).

The data can be preprocessed and

structured to make retrieval faster,

perhaps at the cost of deletion or

insertion times. Several solutions

oriented toward the big data market

exist in terms of providing fast,

concurrent databases with good ac-

cess times,65–67 and this might be

the best option for cloud storage

provided there is a value in keeping

the structured data after running an

algorithm on it.

Finally, locality of similar data can be improved. Depending

on the data type, there are algorithms that can do this—it is a

solved problem on three-dimensional meshes.68 This partic-

ular approach is very data dependent, and similarity of the

data is often what needs to be computed in the first place. Ray

keeps the data stored in the same ranks that are responsible

for the computation, distributed uniformly. With fast inter-

connects or efficient routing algorithms, because the indi-

vidual vertices in the graph are small, this is not a great

problem during execution.

Keeping a Large-Scale Application Useful

The proper use of computing time and resources is an area of

focus in high-performance computer software research.

However, in a world where a machine’s time costs less than a

dollar an hour, and human wages are climbing globally, it is

worthwhile to consider the gain in efficiency from the proper

use of human resources. To keep an application useful several

levers can be exploited: ease of set-up, accuracy of results, and

availability of information are just three. We will describe

how Ray benefits from, and how it gained, its usability.

Human Learning: An Embarrassingly
Nonparallel Problem

From the standpoint of a software developer, most tasks are

ripe for optimization. Data can always be preprocessed, state

can always be stored (for example, using checkpoints), and

when in doubt, add more cores. This rule does not hold for

set-up time, because adding more analysts won’t make them

understand the software’s parameters and chosen file format

faster.

Genomics knows many file formats for sequences (fasta,

fastq,69 sff,70 color-space71), alignments (sam,72 bam,73 psl74),

variations (vcf,75 gvf76), and annotations (gff,77 bed,78 wig).

Raw DNA sequences from published research are archived in

the Sequence Read Archive.79 The packaging of data is a

problem for big data analysts because in the absence of

standards, every software will design their own (often over-

fitted to their own problem). In the

presence of standards, analysts will

feel constricted by the data repre-

sentation and have trouble concep-

tualizing a way to coerce the results

into a format that is usable by other

programs.

Ray accepts all kinds of file formats

and outputs in the standard fasta

format. Its plugins that perform

taxonomic profiling39 output data in

XML. For genome assembly, Ray has only one important

parameter: the length of the subsequences (k-mers), which

will be familiar to anyone experienced with assembly and is

easily explained to a biologist (see Refs.46,80,81). Other pa-

rameters are adjusted automatically with the data.

Better Results or Faster Results?

Much is made to improve software performance, especially

on pay-per-use resources. More often, users, especially in the

scientific field, will demand that the accuracy of the results

match that of the more commonplace imperative algorithms

they used to run on their desktops.

When our team took part in the Assemblathon 2 challenge

(http://assemblathon.org), which aims to identify the best

DNA assembly methods for vertebrate genomes, it was found

that no assembler managed to obtain consistently best-in-

class results on all datasets. However, Ray was ranked first

overall for the snake genome dataset.82

While Ray’s primary selling points are its great scalability (see

Fig. 2 and Ref.39) and portability, not even being fast on

larger data can let analysis software off the hook altogether.

And we all have to ensure at least state-of-the-art precision.

While this can be difficult for particularly interlinked data,

the task was facilitated by the abstraction provided by Ray-

Platform and its state machine.

Being Open Closes No Doors

Ultimately, the best way to make the most of users’ time is to

listen to them; Ray is open-source software, and in addition

the team maintains two mailing lists and handles tracking

issues. This offers an interface for users to express their

problems or propose their ideas and promotes Ray’s (and, by

extension, RayPlatform’s) growth toward ever more efficiency

by keeping its purpose clear—to provide good data analysis

‘‘DATA CAN ALWAYS BE
PREPROCESSED, STATE CAN

ALWAYS BE STORED, AND
WHEN IN DOUBT, YOU CAN

ALWAYS ADD MORE CORES.’’

Godzaridis et al.
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on nearly every machine for every user for problems related

to de novo genome assembly.

For data analysis and validation, the time cost of having to

download the results before looking at them can be prohib-

itive. We developed Ray Cloud Browser (http://genome

.ulaval.ca:10090/client/ and https://github.com/sebhtml/Ray-

Cloud-Browser), a streaming solution that allows the user to

watch the reconstructed genome as an actual graph from any

web browser. Ray Cloud Browser is shown in Figure 3. This

web-based streaming visualizer called Ray Cloud Browser was

developed as a companion to the assembler to allow users to

walk through assembly paths themselves, just as the algorithm

does. Not only is the concept of the assembly problem more

clearly expressed when removed from its data-manipulation

trappings, the interface allows analysts to publish their results

on a server for end users to consume without having to

download giant files. Beyond validation, analyses can be

performed in a colored version of the graph. Such graphs can

be generated by Ray,39 ABySS,34 or by Cortex in the case of

multiple samples.83 This kind of openness—between software

providers and analysts and between analysts and end-users—

leads to faster results and will generate faster decisions based

on big data.

The Road Ahead

Improving our Ray genome assembler code base is part of the

roadmap. Using Ray Cloud Browser, we are able to visually

investigate particular cases in the data where our algorithms

can be improved.

Future work for our framework—RayPlatform—includes

load balancing of workers so that processing tasks are mi-

gratable between MPI ranks. Previous research articles from

the CHARM + + project will assist us in that regard.57,58

Conclusions

When dealing with large data and complex systems, users

really want three attributes in particular: scalability, us-

ability, and correctness. To have it all, we have designed

RayPlatform, a portable parallel framework on which the

genome assembler Ray35,39 is based. Other genomic appli-

cations can use this framework, such as our metagenome

assembler and profiler.39 Our approach does not aim at

identifying big data and leveraging bigger systems; rather, it

deals with many systems for many data. An interlocked

graph is split into tractable chunks of data, and a network of

computers into communicable units. With fine granularity,

ranks work and communicate as little as possible in the

shortest possible amount of time. This allows for scaling

both problem and resources from small data, to big data, to

bigger data, and beyond, without a paradigm change, al-

lowing the details of the approach, and not its size, to truly

fit the problem.

We have presented the larger design principles at work in

RayPlatform and the reasoning behind them: getting the

most efficiency out of both machine and user, keeping us-

ability and portability at the forefront. As data gets bigger

FIG. 2. Scalability of Ray: The scalability was measured in the
sample SRS011098 from the Human Microbiome Project.10 Using
the same input data, different times were obtained by varying the
number of processes. Panel (a) shows the time required to build
the genome graph for various numbers of processes. In this pa-
nel, the time asymptote is 4,000 seconds because some parts of
the computation are not parallel (Amdahl’s law). In panel (b) the
time asymptote is reached at a lower number of processes be-
cause the time includes all the computing steps of an assembly
with Ray.

BEST PRACTICES FOR DESIGNING SCALABLE TOOLS
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and analysts scarcer, it’s not only computing time that

matters.
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cherche sur la Nature et les Technologies (FQRNT).

Author Disclosure Statement

The authors declare no competing financial interests exist.

References

1. Marx V. Biology: The big challenges of big data. Nature

2013; 498:255–260.

2. Schatz MC, Langmead B, and Salzberg SL. Cloud com-

puting and the DNA data race. Nature Biotechnology

2010; 28:691–693.

3. Schadt EE, Linderman MD, Sorenson J, et al. Compu-

tational solutions to large-scale data management and

analysis. Nature Reviews Genetics 2010; 11:647–657.

4. Stein LD. The case for cloud computing in genome in-

formatics. Genome Biology 2010;11:207 + .

5. Dudley, JT Butte AJ. In silico research in the era of cloud

computing. Nature Biotechnology 2010; 28:1181–1185.

6. Stein L. Creating a bioinformatics nation. Nature 2002;

417:119–120.

7. Henry CS, DeJongh M, Best AA, et al. High-throughput

generation, optimization and analysis of genome-scale

metabolic models. Nat Biotech 2010; 28:977–982.

8. Bentley DR, Balasubramanian S, Swerdlow HP, et al.

Accurate whole human genome sequencing using re-

versible terminator chemistry. Nature 2008; 456:53–59.

9. Gathering clouds and a sequencing storm. Nature Bio-

technology, 2010; 28:1.

10. The Human Microbiome Project Consortium. Structure,

function and diversity of the healthy human microbiome.

Nature 2012; 486:207–214.

11. Smillie CS, Smith MB, Friedman J, et al. Ecology drives a

global network of gene exchange connecting the human

microbiome. Nature 2011; 480:241–244.

FIG. 3. A screenshot of Ray Cloud Browser. The green path is a sequence assembled by Ray from reads. Numbers near vertices are
sequencing depths. Vertices with low sequencing depths are sequencing errors.

Godzaridis et al.

ORIGINAL ARTICLE

MARY ANN LIEBERT, INC. � VOL. 1 NO. 4 � DECEMBER 2013 BIG DATA BD233



12. Rothberg JM. Leamon JH. The development and impact

of 454 sequencing. Nat Biotechnol 2008; 26:1117–1124.

13. Pybus OG, Rambaut A. Evolutionary analysis of the dy-

namics of viral infectious disease. Nat Rev Genet 2009;

10:540–550.

14. Nakamura S, Maeda N, Miron IMM et al. Metagenomic

diagnosis of bacterial infections. Emerging Infectious

Diseases 2008; 14:1784–1786.

15. Mardis ER. New strategies and emerging technologies for

massively parallel sequencing: applications in medical

research. Genome Medicine 2009; 1(4).

16. Caporaso JG, Kuczynski J, Stombaugh J, QIIME allows

analysis of high-throughput community sequencing data.

Nature Methods 2010; 7:335–336.

17. Lozupone C, Knight R. UniFrac: a new phylogenetic

method for comparing microbial communities. Applied

and Environmental Microbiology 2005; 71:8228–8235.

18. Lozupone C Hamady M, and Knight R. UniFrac–an

online tool for comparing microbial community diversity

in a phylogenetic context. BMC Bioinformatics 2006;

7:371 + .

19. Lozupone CA. Knight R. Global patterns in bacterial

diversity. Proceedings of the National Academy of Sci-

ences 2007;104:11436–11440.

20. Costello EK, Lauber CL, Hamady M et al., Bacterial

community variation in human body habitats across

space and time. Science 2009; 326:1694–1697.

21. Ley RE, Lozupone CA, Hamady M, et al. Worlds within

worlds: evolution of the vertebrate gut microbiota. Nat-

ure Reviews Microbiology 2008; 6:776–788.

22. Wu D, Hugenholtz P, Mavromatis K, et al. A. Eisen. A

phylogeny-driven genomic encyclopaedia of Bacteria and

Archaea. Nature 2009; 462:1056–1060.

23. McPherson JD. Next-generation gap. Nature Methods

2009; 6:S2–S5.

24. Mardis E. The $1,000 genome, the $100,000 analysis?

Genome Medicine 2010; 2:84 + .

25. Pevzner PA. 1-Tuple DNA sequencing: computer analy-

sis. J Biomol Struct Dyn 1989; 7:63–73.

26. Idury RM, Waterman MS. A new algorithm for DNA

sequence assembly. Journal of Computational Biology

1995; 2:291–306.

27. Myers EW, Sutton GG, Smith HO, Adams, and Venter

JC. On the sequencing and assembly of the human ge-

nome. Proc Natl Acad Sci U S A 2002; 99:4145–4146.

28. Pevzner PA, Tang H, and Waterman MS. An Eulerian

path approach to DNA fragment assembly. Proceedings

of the National Academy of Sciences 2001; 98:9748–

9753.

29. Miller JR, Koren S, and Sutton G. Assembly algorithms

for next-generation sequencing data. Genomics 2010;

95:315–327.

30. Pop M. Genome assembly reborn: recent computational

challenges. Brief Bioinform 2009; 10:354–366.

31. Myers EW. The fragment assembly string graph. Bioin-

formatics 2005; 21:ii79–ii85.

32. Loken C, Gruner D, Groer L, et al. SciNet: Lessons

learned from building a power-efficient top-20 system

and data centre. Journal of Physics: Conference Series

2010; 256:012026 + .

33. Message Passing Interface Forum. MPI: A Message-

Passing Interface Standard Version 3.0, 2012.

34. Simpson JT, Wong K, Jackman SD, et al. ABySS: A

parallel assembler for short read sequence data. Genome

Research 2009; 19:1117–1123.

35. Boisvert S, Laviolette F, Corbeil J. Ray: simultaneous

assembly of reads from a mix of high-throughput se-

quencing technologies. Journal of Computational Biol-

ogy 2010; 17:1519–1533.

36. Jackson BG, Schnable PS, and Aluru S. Parallel short

sequence assembly of transcriptomes. BMC Bioinfor-

matics 2009; 10 Suppl 1:S14 + .

37. Jackman S, Birol I. Assembling genomes using short-

read sequencing technology. Genome Biology 2010;11:

202 + .

38. Jackson BG, Schnable PS, and Aluru S. Assembly of large

genomes from paired short reads. In Rajasekaran S, ed,

Bioinformatics and Computational Biology, Vol. 5462,

30–43. Springer Berlin Heidelberg 2009.

39. Boisvert S, Raymond F, Godzaridis E, et al. Ray Meta:

scalable de novo metagenome assembly and profiling.

Genome Biology 2012; 13:R122 + .

40. Birol I, Raymond A, Jackman SD, et al. Assembling the

20 Gb white spruce (Picea glauca) genome from whole-

genome shotgun sequencing data. Bioinformatics 2013;

29:1492–1497.

41. Hutchinson G. Evaluation of polymer sequence fragment

data using graph theory. Bulletin of Mathematical Bio-

physics 1969; 31:541–562.

42. Gallant JK. The complexity of the overlap method for

sequencing biopolymers. J Theor Biol 1983; 101:1–17.

43. Qiu X, Ekanayake J, Beason S, et al. Cloud technologies

for bioinformatics applications. In Proceedings of the

2nd Workshop on Many-Task Computing on Grids and

Supercomputers. New York: ACM 2009.

44. Krampis K, Booth T, Chapman B, et al. Cloud BioLinux:

pre-configured and on-demand bioinformatics comput-

ing for the genomics community. BMC Bioinformatics

2012;13:42 + .

45. Bateman A, Wood M. Cloud computing. Bioinformatics

2009;25:1475.

46. Flicek D, Birney E. Sense from sequence reads: methods for

alignment and assembly. Nature Methods 2009; 6:S6–S12.

47. Pham CD. Comparison of message aggregation strategies

for parallel simulations on a high performance cluster. In

Proceedings of the 8th International Symposium on

Modeling, Analysis and Simulation of Computer and

Telecommunication Systems 2000;358–365.

BEST PRACTICES FOR DESIGNING SCALABLE TOOLS
Godzaridis et al.

234BD BIG DATA DECEMBER 2013



48. Scott SL, et al. The Cray T3E Network: Adaptive routing

in a high performance 3D torus. In Proceedings of Hot

Interconnects IV Symposium (15–16 August 1996), pp.

147–156.

49. Chen D, Eisley NA, Heidelberger P, et al. The IBM Blue

Gene/Q interconnection network and message unit. In

Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and

Analysis. New York: ACM 2011.

50. Faanes G, Bataineh A, Roweth D, et al. Cray cascade: a

scalable HPC system based on a Dragonfly network. In

Proceedings of the International Conference on High

Performance Computing, Networking, Storage and

Analysis, Los Alamitos, CA: IEEE Computer Society Press

2012.

51. Arimilli B, Arimilli R, Chung V, et al. The PERCS High-

Performance Interconnect. In Proceedings of the 2010

18th IEEE Symposium on High Performance Inter-

connects, 75–82. Washington, D.C., IEEE Computer

Society.

52. Ben-Ameur W, Kerivin H. Routing of uncertain traffic

demands. Optimization and Engineering 2005; 6:283–

313.

53. Ben-Ameur W. Between fully dynamic routing and ro-

bust stable routing. In Design and Reliable Commu-

nication Networks, 2007, 1–6. Washington, D.C., IEEE.

54. Ben-Ameur W, _Zotkiewicz M. Robust routing and op-

timal partitioning of a traffic demand polytope. Inter-

national Transactions in Operational Research 2011

18:307–333.

55. Knuth DE. Art of Computer Programming, Volume 3:

Sorting and Searching (2nd Edition). Boston, MA,

Addison-Wesley Professional 1998.

56. Karp RM. Reducibility among combinatorial problems.
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